Catalysis and Reaction Engineering Laboratory

촉매 및 반응공학 연구실

관련기사 바로가기

저희 연구실은 촉매 반응에서의 활성, 선택성, 안정성의 원인을 원자 수준에서 규명하고, 이를 바탕으로 에너지 효율적이며 지속가능한 화학제품 생산을 구현할 수 있는 차세대 촉매 개발에 집중하고 있습니다.고체 상태 핵자기공명(NMR), 적외선(IR), 라만(Raman), X-선 흡수 분광법(XAS) 등을 포함한 다양한 in situ 및 operando 분광 기술을 융합하여, 실제 반응 조건하에서 활성점의 구조, 반응 경로, 표면 동역학적 현상을 정밀하게 분석합니다.이러한 기반 연구를 통해 촉매 설계의 과학적 원리를 정립하고, 얻어진 학문적 통찰을 바탕으로 산업적 요구에 부응하는 정교한 촉매 시스템을 제공하는 것이 저희의 궁극적인 목표입니다. 해당 연구는 전통적인 정유 및 석유화학 공정은 물론, 탄소중립을 지향하는 미래형 공정에도 폭넓게 적용됩니다.
Our group explores the atomic-scale origin of catalytic activity, selectivity, and stability in heterogeneous systems, with a focus on next-generation catalysts for energy-efficient and sustainable chemical production. By integrating in situ and operando spectroscopic techniques—including solid-state NMR, IR, Raman, and XAS—we investigate active site structures, reaction mechanisms, and dynamic surface phenomena under realistic reaction conditions. Our goal is to establish fundamental design principles and deliver rationally engineered catalysts that bridge academic discoveries with industrial needs in both conventional petrochemical and emerging carbon-neutral processes.

Major research field

Heterogeneous catalysis, Operando/in situ spectroscopy (NMR, IR, Raman, XAS), Zeolite and nanostructured oxide catalysts, Acid/base and redox sites

Desired field of research

Spectroscopic elucidation of reaction mechanisms under operando conditions, , Fundamental structure–activity studies for rational catalyst design, Translational catalysis from fundamental science to commercial application

Research Keywords and Topics

· Rational Design of Catalysts through Fundamental Understanding: Unraveling structure–activity relationships to guide the development of catalysts for sustainable and energy-efficient chemical transformations
· Operando Spectroscopic Analysis of Catalytic Mechanisms: Applying in situ and operando NMR, IR, Raman, and XAS to identify active sites and transient species under working conditions.
· Control of Catalytic Active Sites Engineering: Brønsted/Lewis acid and redox sites in zeolites and porous oxides to improve selectivity and reactivity.
· Stable Catalyst Design for Harsh Reaction Environments: Developing hydrothermally and structurally robust catalysts that maintain long-term activity in industrial and sustainable processes.
· Bridging Fundamental Science and Industrial Catalysis: Collaborating with global industry partners to translate spectroscopic insights into scalable catalytic technologies.

Research Publications

· NATURE CATALYSIS / Origin of active sites on silica–magnesia catalysts and control of reactive environment in the one-step ethanol-to-butadiene process / S.-H. Chung,* T. Li, T. Shoinkhorova, S. Komaty, A. Ramirez, I. Mukhambetov, E. Abou-Hamad, G. Shterk, S. Telalovic, A. Dikhtiarenko, B. Sirks, P. Lavrik, X. Tang, B.M. Weckhuysen, P.C.A. Bruijnicx, J. Gascon, J. Ruiz-Martínez*; 2023-04
· APPLIED CATALYSIS B: ENVIRONMENT AND ENERGY / Core–shell structured magnesia–silica as a next generation catalyst for one-step ethanol-to-butadiene Lebedev process / S.-H. Chung,* J.C. Navarro de Miguel, T. Li, P. Lavrik, S. Komaty, Y. Yuan, D. Poloneeva, W.H. Anbari, M. Nejib Hedhili, M. Zaarour, C. Martín, T. Shoinkhorova, E. Abou–Hamad, J. Gascon, J. Ruiz–Martínez*; 2024-05
· ACS CATALYSIS / Role of Phosphorus on ZSM-5 Zeolite for the Methanol-to-Hydrocarbon Reaction / L. Song, J.C. Navarro de Miguel, S. Komaty, S.-H. Chung,* J. Ruiz-Martinez; 2025-03

Patents

· Patent filed (US 63/528,997), “Preparation methods of metal loaded catalysts for ethanol-to-butadiene”, July 2023.
· 9 Korean Patents including metal nanoparticle dispersed catalysts, inorganic core-shell structured materials, succinic acid conversion, lignin conversion and waste-water treatment.

국가과학기술표준분류

  • EC. 화공
  • EC01. 화학공정
  • EC0101. 촉매/반응기술

국가기술지도분류

  • 환경/에너지 프론티어 진흥
  • 031400. 에너지 절약형 반응 및 분리공정기술

녹색기술분류

  • 고효율화기술
  • 친환경 제조공정 및 소재효율성 향상
  • 354. 친환경 공정 및 제품 기타 기술

6T분류

  • ET 분야
  • 에너지
  • 050213. 고효율 반응분리공정기술