관리번호	2017-주	-력산업IT융합-일반-지정-01	기술분류	중분류 l	중분류II		
과제성격	원천기	술형(), 혁신제품형(√)	기호군ㅠ	전기전자부품	_		
융합유형	신제품형	신제품형(), 고부가가치형(√), 해당없음()					
신성장동력	ICT융합(√), ㅂ이오헬스(), 고급소ㅂ째(), 신소재부품(), 주력신업고부기키쳐회(), 에너지신신업()						
해당여부	특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(), 경쟁형R&D()						
7171104		오픈소스 임베디드 시스템의 개발/양산 전주기 지원을 위한					
과제	ਰ ਹ	개	방형 검증	솔루션 개발			
1. 필요성							

- 최근 Linux, FreeRTOS 및 오픈소스 기반의 플랫폼을 활용한 개발이 일반화 되었으나, 양산 품질의 검증(다양한 HW I/F 및 통신 프로토콜, stress test, security, 등)에는 한계
- IoT, 웨어러블 등 임베디드 SW IT 제품 생명 주기의 극단적 단기화로, 짧은 개발 기간과 높은 품질 검증 요구가 증가하여, 기획/개발/양산 전 과정을 통합 지원 하는 임베디드 시스템 검증 솔루션이 요구됨
- 해외 선진 업체들은 이미 개방형 임베디드 시스템을 플랫폼 전략의 핵심 요소로 활용하고 있으나, 국내 중소·중견 기업은 임베디드 시스템 검증 역량 및 전문 인력 부족을 겪고 있어서, 무분별한 기술도입은 플랫폼 종속 및 주도권 문제를 야기
- 따라서 국내 중소·중견 기업의 임베디드 시스템 경쟁력을 제고하고, 개방과 협력을 체계적, 전략적으로 지원하기 위한 표준화된 개방형 검증 솔루션 확보가 필요

- 최종목표 : 오픈소스 임베디드 시스템 제품/부품의 개발 기간 단축과 고신뢰 품질 검증이 가능한 전주기 통합 지원 개방형 개발/양산 검증 솔루션 개발 (TRL: [시작] 5단계 ~ [종료] 7단계)
 - 오픈소스 임베디드 시스템 검증 기술 개발
 - * 오픈소스 HW/SW 플랫폼 대상 산업 표준 검증 기준 정의
 - * 오픈소스 플랫폼에서 사용하는 공통 하드웨어 검증을 위한 인터페이스 기술 개발 (조립 가능하고 웹 API 프로토콜 표준 네트워크 통신을 통하여 제어되는 표준 인터페이스 검사 컨트롤러 개발)
 - * 오픈소스 운영체제에서 동작하는 응용 소프트웨어 통합 실시간 검증 기술 개발
 - 최종 제품에 동작하는 어플리케이션 소프트웨어의 이상 동작 검출
 - 오픈 운영체제의 표준 디바이스 드라이버의 통합 검증이 가능한 개발 검증
 - 오픈 소스 미들웨어 검증 소프트웨어
 - 클라우드 서비스 기반 개발/양산 통합 검증/분석/제안/레포팅 시스템 개발
 - * 임베디드 시스템 전 주기 적용 표준 검사 관리 기준 정의 및 프레임워크 개발
 - * HW·운영체제·응용 프로그램 간의 트러블 상관 관계 분석
 - * SW 형상관리·실시간 검증·자동 패키징을 포함하는 전 과정 통합 기술 개발

- * 브라우저 사용자 UI 형식의 그래픽 검증/통계 레포팅 및 오류/문제 상황 예측 최적화 기술 개발
- 유연/확장 가능한 검증 플랫폼 설계 및 개발
- * 다양한 오픈소스 플랫폼에 유연하게 적용할 수 있는 마이크로 서비스 아키텍쳐 패턴 적용 플랫폼 개발
- * 검증 서비스 확장 및 개방과 협력을 위한 표준 웹 API 기반 프로토콜 규정 및 주요 검증 SW의 공개 소스화

ㅇ 개발목표

	핵심 기술/제품 성능지표	단위	달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1	표준 H/W I/F 종류1 ¹⁾	EA	15 이상	-	15 이상 미국, 멘토그래픽스
2	스냅샷 분석 대상 프로세서 제품 수 ²⁾	EA	5 이상	-	서버 미국, 레드햇
3	분석 대상 분류 수 ³⁾ (임베디드 시스템)	EA	10 이상	-	서버 미국, 레드햇
4	개발/양산 SW 관리 통합 수 ⁴⁾	EA	3 이상	-	-
5	오픈 플랫폼 지원 수 ⁵⁾	EA	3 이상	-	다수 미국, 멘토그래픽스

- 1) 범용적 I/F 우선 적용 및 추후 확장 가능 설계 (RS-232, USB, Ethernet, LCD, HDMI, GPIO, Sound, Toutch, Power, WiFi, BLE, 등)
- 2) 동작 상황을 다각도로 분석하기 위해 SW 스냅샷 방식으로 CPU,메모리,IO 데이터를 수집 가능한 프로세서 제품 개수(경량 프로세서, 고 기능 어플리케이션 프로세서 포함, 운영체제 크래쉬 발생 요건 분석)
- 3) 공개 운영체제 기반 임베디드 SW 동작 환경 대상으로 부트로더, 커널, 디바이스드라이버, 미들웨어, 어플리케이션에 따른 분류 타입
- 4) 개발 과정의 SW 형상 관리 및 패키징, 자동 테스트 소프트웨어 등을 통합함
- 5) 국내에서 중점적으로 사용되는 오픈소스 (리눅스, FreeRTOS 기반 개방형 IoT 플랫폼) 적용 상용 제품을 대상으로, 과제 수행 기간 내 확보한 레퍼런스
- * 분야 및 개수는 시장 파급력과 기술의 검증/확산 효과를 고려하여 선정/제시
- * 수요자 기술 지원을 통한 결과물 검증, 수요자 기준 시장 파급 효과 제시

3. 지원기간/예산/추진체계

○ 기간 : 26개월 이내 (1차년도 6개월 이내)

○ 정부출연금 : '17년 4억원 이내(총 정부출연금 18억원 이내)

○ 주관기관 : 중소·중견기업 ○ 기술료 징수여부 : 징수

관리번호	2017-주	력산업IT융합-일반-지정-02	기술분류	중분류 l	중분류II	
과제성격	원천기	실천기술형(), 혁신제품형(√)		전기전자부품	_	
융합유형	신제품형	· - - 				
신성장동력	ICT융합	「융합 $√$), 바이오헬스 $)$, 고급소비재 $($ $)$, 신소재부품 $)$, 주력신업고부가 가치화 $($ $)$, 에너자신신업 $($ $)$				
해당여부	특허연기	볘(), 표준연계(), 디자인연.	계(), 글로	.벌R&D(), 초고난도	(), 경쟁형R&D()	
과제명 경량		경량 임베디드 시스템을	위한 내	장형 인공지능 모듈	듈 핵심기술 개발	
1. 필요성	}					

- 딥러닝 기반 인공지능 기술이 다양한 분야에 혁신적 변화를 가져오고 있으나, 대부분 고사양 HW 및 대용량 스토리지, 클라우드에 의존
- 클라우드의 도움 없이 에지 디바이스 독립적으로 혹은 클라우드 의존 및 인터넷 연결을 최소화 할 필요가 있는 다양한 인공지능 응용이 발굴, 제안되고 있음
- 특히 저사양의 에지 디바이스에서 독립적으로 인공지능이 동작하는 IoT 디바이스에 대한 폭발적 수요 기대

- 최종목표 : 경량 임베디드 시스템에서 독립 운용이 가능한 딥러닝 기반 내장형 인공 지능 모듈 구조 및 제품/서비스 개발 (TRL: [시작] 5단계 ~ [종료] 7단계)
 - 딥러닝 기반 임베디드 시스템 최적화 인공지능 엔진 및 구현 아키텍처 개발
 - · 저사양, 저전력, 소형 임베디드 시스템에 최적화된 인공지능 엔진 개발
 - · 저사양 core 와 딥러닝 학습 및 인식을 지원하기 위한 컴패니언* 모듈 개발
 - * 컴패니언 모듈 : 경량 임베디드 시스템 내 독립운용 가능한 인공지능 모듈(HW/SW)
 - 내장형 인공지능 응용 서비스 및 디바이스 개발
 - · 독립운용 인공지능 엔진적용 디바이스 및 서비스 모델 개발
 - 연차별 서비스 고도화 및 사업화 모델 검증
 - * 연차별 사업화 실적 확보가 가능한 서비스 모델 및 사업화 계획 제시
 - 제품/서비스 분야는 다음을 고려하여 제안
 - · 시스템의 복잡도 및 구현/운영 비용 대비 시장 파급효과
 - · 기존 제품과의 차별성, 경량/내장형 인공지능이 필수적인 분야
 - · 응용 제품/서비스에서 요구되는 딥러닝 모델, 성능 목표 및 데이터 제시

○ 개발목표

	핵심 기술/제품 성능지표	단위	달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1	파일럿 제품 인공지능 서비스 데이터 샘플 처리속도	ms	10	_	8 (미국, 인텔)
2	내장형 프로세싱 엔진 코어	%	≤15	_	≤10 (미국, 퀄컴)

	사용률				
3	파일럿 제품 사업화 서비스 모델	종	2 이상	_	-

○ TRL 핵심기술요소(CTE)

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	내장형 인공지능 프로세싱 엔진 기술	6	응용 서비스 지원 SDK	시제품 성능검증
2	복합 인공지능 서비스 파일럿 개발	7	파일럿 제품	시제품 성능검증

3. 지원기간/예산/추진체계

○ 기간 : 26개월 이내 (1차년도 6개월 이내)

○ 정부출연금 : '17년 4억원 이내(총 정부출연금 18억원 이내)

○ 주관기관 : 제한없음

○ 기술료 징수여부 : 징수

관리번호	2017-주	력산업IT융합-일반-지정-0	기술분류	중분류 l	중분류II
과제성격	원천기술	율형(), 혁신제품형(√)	기칠판ㅠ	전기전자부품	_
융합유형	신제품형	<u>└</u> 제품형(), 고부가가치형(√), 해당없음()			
신성장동력	$ CT 8 \text{ of } \sqrt{)} $, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D C 2 \text{ of } \sqrt{)}$, $ D $				
해당여부	특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(), 경쟁형R&D()				
과제명 저전력 고성능		 · 중강현실('AR) 혁신 제품 기	 술 개발	

1. 필요성

- AR 기술이 적용되는 산업분야가 확대되고 있으나, 요구사항 및 조건이 다양하여 구체적인 응용분야에 최적화된 국내외 시장주도형 혁신제품 개발 필요
- 기존 AR 제품들과 차별화할 수 있는 구체적인 응용분야의 발굴과 제품 개발 및 현장에서의 실증이 요구되며 이를 기반으로 AR 시장의 확대 및 다양한 분야로 AR 기술이 확산되는 기반을 마련할 수 있음
- 실증 성공모델을 기반으로 글로벌 시장 확대, 특히 AR 제품 보급이 활발한 선진국을 대상으로 수출 추진 필요

2. 연구목표

- 최종목표 : 저전력 고성능 모바일 증강현실(AR) 혁신 제품 기술 개발 (TRL: [시작] 3단계~[종료] 7단계)
 - 임베디드 멀티모달 AR 디바이스 신호처리 기술 개발
 - ·노이즈 환경에서 인식속도와 인식률을 높일 수 있는 센서 신호처리 기술 개발
 - · 멀티모달 AR 디바이스 센서간 실시간 센서 데이터 통합 기술 개발
 - 사용자 직관적 증강현실 환경 제공을 위한 시각인지, 공간인지 기술 개발
 - · 실 환경 다중 객체 위치정보와 멀티모달 AR 디바이스 센서간 실시간 정합 기술 개발
 - · 사용자 증강현실 디스플레이 적응형 시각인지 정밀도 제공 기술 개발
 - 고해상도 고효율 투과형 광학계 및 증강현실 디스플레이 개발
 - · 마이크로 디스플레이를 적용한 외부영상 정합형 광학 기술 개발
 - · 사용자 편의성 향상을 위한 다중 디스플레이 UI 기술 개발
 - · 고해상도 고효율 투과형 광학계 및 증강현실 디스플레이 H/W 개발
 - 기존 제품과 차별화 될 수 있는 사용자 기반 응용 제품/서비스 개발
 - ㆍ사용자 대상 실 환경에서의 결과물 검증 및 시장 파급 효과 제시
 - · 기존 제품과 차별화 될 수 있는 혁신제품 상용화 및 사업화 방안 제시
 - · 응용 제품/서비스에서 요구되는 성능 목표 및 데이터 제시
 - · 응용 제품/서비스 분야 및 개수를 시장 파급력과 기술의 검증/확산 효과를 고려하여 제시

○ 개발목표

	핵심 기술/제품 성능지표		달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1	동작 시간	시간	4	1	6(일본, EPSON)
2	광학계 투과도	%	50	30	30(미국, Bushnell)
3	시인성	lux	600	600	628 (미국,ODG)
4	해상도	-	1280x1080	1280x720	1920x1080 (미국,ODG)

○ TRL 핵심기술요소(CTE)

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	저전력 임베디드 신호 처리 기술	7	증강현실 센서 및 디스플레이 내장형 임베디드 시스템	사용시간 측정
2	선명한 증강현실 디스 플레이를 위한 광학계 투과도 향상 기술	7	증강현실 센서 및 디스플레이 내장형 임베디드 시스템	광학계 투과도 측정
3	고해상도 증강현실 시각 및 공간 인지 기술	7	증강현실 센서 및 디스플레이 내장형 임베디드 시스템	인식 해상도 측정

3. 지원기간/예산/추진체계

○ 기간 : 26개월 이내 (1차년도 6개월 이내)

○ 정부출연금 : '17년 4억원 이내(총 정부출연금 18억원 이내)

○ 주관기관 : 중소·중견기업 ○ 기술료 징수여부 : 징수

관리번호	201	7-반도체-병렬-지정-04		중분류 l	중분류II	
과제성격	원천기·	술형(√), 혁신제품형()	기술분류	반도체소자 및 시스템, 반도체장비		
융합유형	신제품	신제품형(), 고부가가치형(), 해당없음(√)				
신성장동력	ICT융합√), ㅂ이오헬스), 고급소ㅂ째), 신소재부품), 주락산업고부7 ፆ ▶ ▶ (), 에너주산산업)					
해당여부	특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(√), 경쟁형R&D()), 경쟁형R&D()	
과제명		반도체산업향 미래반도체 원천기술 개발				
1. 필요성						

- 국내 반도체산업은 메모리 공정 중심의 발전으로 반도체소자, 재료, 시스템반도체 연구에 대한 기반(전문인력, IP, 연구기반 등)이 매우 취약하여 글로벌 경쟁에 불리한 상황이나 단기간 내 산업화 가능한 응용기술 중심 지원 결과 학연의 반도체 연구인력과 역량의 약화로 인력양성 및 원천 IP 창출에 미흡하여, 반도체산업 재도약을 위해서는 산학연관의 역할 재정립을통한 선진적인 에코시스템 구축이 필요
- 미국의 경우 산업체와 정부의 협력으로 SRC (Semiconductor Research Corporation) 센터를 만들어 미래반도체를 연구하고 있으며 이를 바탕으로 산업지향형 글로벌 기술 리더십을 유지하고 있으므로 이에 대응하는 미래 반도체 원천기술연구 사업의 추진 필요
- 2013년부터 시작한 동사업의 파급효과를 높이기 위해서는 지속적인 투자와 아이템 발굴이 필요하며, 4기 프로그램까지 중점 지원한 반도체소자, 공정, 장비 등의 분야 외에도 반도체 재료, 시스템반도체 등 반도체 전분야로 확대를 추진

- 최종목표: 중장기적으로 산업계가 활용할 수 있는 미래반도체와 관련된 핵심요소기술로서 반도체산업에 파급효과가 큰 원천기술 개발 (TRL: [시작] 3단계 ~ [종료] 5단계)
 - 개발기술의 산업지향 지원 및 확산
 - 세부과제와 수요기업의 연계 역할 수행
 - 산업계의 공동수요의견 수렴, 연구기관간 시너지효과 촉진, 산업계와 연구기관간 협력증진, 개발기술의 관리 및 기술정보의 장비/소재업체를 포함한 산업계 확산
 - 기술동향보고서 및 그룹별 개발결과를 매년 발표 및 개발결과 홍보, 확산
 - 총괄기관은 민간 투자금액을 정부출연금과 구분하여 별도 관리 및 정산 실시(세부과제포함)
 - 개발기술을 활용하고자 하는 기업을 중심으로 "미래반도체개발기술활용협의체"를 구성 및 운영
 - 기술그룹별 투자기업 엔지니어 1인 이상을 구성하여 기술개발 방향설정 등 컨설팅 실시

3. 지원기간/예산/추진체계

- **기간**: 54개월 이내 (1,2차년도 개발기간 : 9개월)
- **정부출연금**: '17년 1.5억원 이내(총 정부출연금 9억원 이내)
- 주관기관: 총괄과제 기선정
- **기술료 징수여부**: 비징수

총괄과제명	반도체산업	반도체산업향 미래반도체 원천기술 개발				
세부과제명	세부과제별	세부과제별 평가후 결정 (과제명과 연구범위를 명확히 기재)				
기술분류	중분류 l	반도체소자 및 시스템, 반도체장비	중분류II			
융합유형	신제품형(),	신제품형(), 고부가가치형(), 해당없음(√)				
신성장동력분야	ICTS합√), ㅂþIS	CT융합√, ㅂρ12헬스), 고급선제), 신소재부품),주락신업고부7호화), 에-자신산업)				
해당여부(√)	특하연계(), 표준연계(\sqrt), 디자인연계(), 글로벌P&D(), 초고난도(\sqrt), 경쟁형P&D()					
1. 연구목표						

- 최종목표: 중장기적으로 산업계가 활용할 수 있는 미래반도체와 관련된 핵심요소기술로서 반도체산업에 파급효과가 큰 원천기술 개발 (TRL: [시작] 3단계 ~ [종료] 5단계)
 - 반도체소자, 공정, 장비, 재료, 시스템반도체 등 반도체 산업 전분야에 적용이 될 수 있는 원천기술 중에서 세부과제를 선정
 - 개발기술은 미래 반도체소자의 중장기적 원천적인 기술이며, 비영리기관을 지원하는 것으로 기술료 면제로 추진
 - 제안방법 : 세부과제(A)는 세부 핵심기술목표(B)을 참고하여 세부과제별(A)로 컨소시엄을 구성하여 제안
 - 단, 세부과제(A)별 아래의 세부핵심기술목표(B)는 모두 포함해야 하며, 세부 핵심기술목표 이외에 추가 목표 설정 가능

• 세부과제별 금액 산정

- 세부과제별 연간 지원금액은 아래 표 '세부과제 및 세부 핵심기술내용'의 세부과제(A)에 기입되어 있음(연간 지원금액 중 50%는 정부출연금이며, 나머지 금액은 민간투자금)
 - * (예시) 세부과제① 연간 지원금액 3.62억원 이내 = 정부출연금 1.81억원 이내 + 민간투자금 1.81억원 이내
 - * 단, 사업계획서의 사업비는 정부출연금에 대해서만 작성하고, 연구목표 및 내용은 민간투자금을 포함한 총 사업비(정부출연금+민간투자금) 규모로 작성
 - * 또한, 정부출연금 이외의 민간투자금액은 총괄주관기관과 별도 협약시 민간투자금액과 관련된 사업비내역서를 추가로 첨부하여 별도 지급 예정 (정부출연금 내역과 이중 계상 불가)
- 세부과제(A)에 기입된 금액은 12개월 기준이므로 1, 2, 3차년도의 경우 각각 9/12, 9/12, 7/12에 해당하는 금액으로 산정하여야 함

• 세부과제 및 세부 핵심기술내용

분 야	세부과	제(A)	세부핵심기술목표(B)
인공 지능 소자	①사물인식 을 위한 설계/알 고리즘 기반의 뉴로모픽 컴퓨팅 칩	사물 인식을 위한 뉴로모픽 컴퓨팅 하드웨어 플랫폼 개발	o 3 layers 이상의 뉴런/시냅스 구조로 동작하는 사물인식 알고리즘 개발 (Multi-layer-perceptron) o CIFAR-100, ImageNET 기반 사물 인식이 가능한 뉴로모픽 시뮬레이터 제작 o FPGA board 등을 이용하여 Off-line 학습 전용 사물인식 뉴로모픽 하드웨어 제작
	개발 (3.62억원 이내)	이진 신경망 알고리즘/ 설계	o 시냅스 동작 모델링을 포함한 이진 신경망 알고리즘 및 하드웨어 개발 (동작 전압: < 3V) o 3 layers 이상의 뉴런/시냅스를 포함한 이진 신경망 알고리즘구조 및 하드웨어 개발 (Multi-layer-perceptron)

분 야	세부과제(A)	세부핵심기술목표(B)
	기술로 구현한 뉴로모픽 칩 하드웨어 개발	o 이진 신경망 알고리즘의 MNIST 인식률: > 95%
차세대 재료	② 지능형 입자를 적용한 다중막 선택적 연마 CMP Slurry 개발 (2.41억원 이내)	- CMP Slurry 적용 가능 DDS(Double-sided scrubber) 입자 확보 - 입자 Core-Shell 구조 개발 - 연마 Chemical의 Sensitive Release System 구현
측정 분석/ 모델링	③ 10nm 공정에서의 Reliability, Degradation model (BTI, HCI) 및 TCAD simulator 개발 (2.41억원 이내)	o Stress time 10, 100, 1000, 3000 sec에 따른 l _{dsat} degradation 경향성 예측: time별 delta ldsat 열화율 10% 오차 이내 o Drain bias (V _d) 크기에 따른 HCI stress 현상 예측력 확보(ldsat 및 V _{th} 열화율) 기술 필요: l _{dsat} /V _{th} 열화율 10% 오차 이내 ※ 위 사항에 대하여 simulation tool(Synopsys Sentaurus, ATLAS Silvaco 등)에 적용하여 위와 같이 계산식에 따라 평가함
	④ 고속, 저전력 데이터 전송용 실리콘 기반 광-전 인터페이스 기술 (3.62억원 이내)	o 고속, 저전력 데이터 전송용 실리콘 기반 광 인터포저 설계 및 이를 활용한 단일칩 구현 - I/O 대역폭: 28Gbps*4channels - 비트당 에너지소비량: 2.2pJ/b - 칩간 전송 거리: 300mm 이상
시스템 반도체 설 계	⑤ NVDIMM-P를 위한 메모리 시스템 SW 및 아키텍처 최적화 (2.41억원 이내)	o NVDIMM-P 기반 이기종 메모리의 효율적 지원을 위한 커널 메모리 관리 기법 개발 - 지역성 인지 데이터 할당 기술 개발 - 비휘발성 메모리 사용을 위한 데이터 할당 기술 개발 o NVDIMM-P 기반 이기종 메모리의 효율적 지원을 위한 사용자 관리 NVDIMM 기법 개발 - 사용자 수준 NVDIMM 관리 기법 개발 - NVDIMM-P 사용자 라이브러리 개발 및 Memcached 등에서 성능 검증

2. 지원기간/예산/추진체계

- · 기간: 49개월 이내 (1,2차년도 9개월, 3차년도 7개월, 4,5차년도 12개월)
- **정부출연금**: '17년 5.422억원 이내(총 정부출연금 29.52억원 이내)
 - * 세부과제(A)에 기입된 정부출연금은 12개월 기준 금액이며, 1, 2, 3차년도의 경우 각각 9/12, 9/12, 7/12에 해당하는 금액임
- · 주관기관: 대학

관리번호	201	7-반도체-일반-지정-05		중분류 l	중분류II	
과제성격	원천기·	술형(√), 혁신제품형()	기술분류	반도체소자 및 시스템		
융합유형	신제품	형 $(√)$, 고부가가치형 $($ $)$,	해당없음()		
신성장동력	ICT융합	$\sqrt{}$), 바이오헬스($$), 고급쇼비재($$)	, 신소재부품), 주력신업고부기 카토화), 에-자신신업)	
해당여부	특허연기	fl(), 표준연계(√), 디자인연겨	l(), 글로벌	P&D(√), 초고난도(), 경쟁형R&D()	
=1 =1) ;	- 광전집적 기술을 활용 ^학		한 데이터선	<u> </u>	력 송수신 부품	
과제'	ਰ	원천기술 개발				
1. 필요성						

- 최근 알파고로 관심이 집중되고 있는 인공지능 기술의 핵심은 기계학습 알고리즘과 막대한
 양의 데이터를 저장 및 처리하는 데이터센터에 있으며, 데이터센터의 막대한 소비전력을 줄이기 위한 많은 연구가 진행 중에 있음
- 현재 데이터센터의 외부 통신은 전기신호를 광신호로 바꾸어 전달하는 광송수신 기술에 의 존하고 있으며, 점차로 데이터센터 내부 통신도 소비전력을 줄이기 위하여 광송수신 기술의 이용이 확산되고 있음
- 광송수신 기술의 핵심은 광전집적 부품기술에 있으며, 이 기술은 데이터 통신, RF 응용, 센서 응용, Lidar 응용 등으로 적용이 확대될 수 있어, 미국의 경우 5년간 6억1천만달러를 투자하는 AIM Photonics project이 2015년부터 시작하였으나, 현재 국내 기술 투자는 미흡한 상황
- 다양한 응용이 가능하며, 사업성이 높은 광전집적 송수신 부품 기술에 대한 정부주도의 R&D 연구개발 사업이 절실히 필요한 시점임
- IEEE 표준화 회의에서 400Gbps급 송수신 부품의 시장 진입이 지연될 것으로 예상되었으나, 현재 IEEE 표준화 회의에서 56Gb/s PAM-4 신호를 사용하여 400Gbps급의 송수신 부품 규격 으로 유력하게 논의되고 있어 관련 기술의 선점을 위한 연구개발 지원이 필요한 시점임

- 최종목표: 데이터센터용 400Gbps급 광전집적 송수신 부품 개발
 (TRL:[시작] 3단계 ~ [종료] 5단계)
 - 도파로 타입 모듈레이터 개발
 - 도파로 타입 고집적 디텍터 개발
 - 구동 IC 개발
 - TIA (Transimpedence amplifier) IC 개발
 - 광도파로 소자와 구동 IC의 접합 또는 직접 기술 개발
 - 광전집적 소자를 이용한 400Gb/s 광수신 모듈화 기술 개발
 - 국내외 표준화기술 및 인증
 - * 산업에 적용 가능한 국내외 표준 제안 및 채택(KS, ISO등)
 - * 전자파적합등록(KC), CE(EMC) 등

• 개발목표

핵심 기술/제품 성능지표		단위	달성 목표	국내최 고수준	세계최고수준 (보유국, 기업/기관명)	
	1	IC 소비전력	mW	< 300	-	< 300 (독일, 프라운호퍼)
	2	Error-free 전송속도	Gbps	400	-	100

∘ TRL 핵심기술요소(CTE)

핵심 기술요소		년계		시험평가 환경	
1	광전 400 Gb/s급 트랜시버	5	400Gb/s에서 동작하는 광전 트랜시버 모듈	1. 목표 Baud rate 전기신호 입력 후, 광송수신 eye 및 error rate 측정 2. 국제 표준 규격 CFP2/4(또는 QSFP모듈) 와 compatible한 트랜 시버 크기, 소비 전력, error rate,	
				전기신호 상호 호환 시험	

3. 지원기간/예산/추진체계

- · 기간: 49개월 이내 (1,2차년도 9개월, 3차년도 10개월, 4차년도 9개월, 5차년도 12개월)
- **정부출연금**: '17년 6억원 이내 (총 정부출연금 33억원 이내)
- **주관기관**: 제한없음 (글로벌 R&D 과제로 해외기관 참여 필수)
- · 기술료 징수여부: 징수

관리번호	2017	7-조선해양-일반-지정-06	기술분류	중분류 l	중분류II
과제성격	원천기 ·	술형(), 혁신제품형(√)	八百正开	조선해양	_
융합유형	신제품	형(), 고부가가치형(),	해당없음(√)	
신성장동력	lCT융합), 바이오헬스(), 고급소비재(), 신소재부품	(), 주력산업고부기기치	호[√), 에너자신신업()
해당여부	특허연기	계(), 표준연계(√), 디자인연:	계(), 글로	벌R&D(), 초고난도(), 경쟁형R&D()
과제명 LNG연료추진선용 0.35t/n급 BOG Handling 시스트			시스템 개발		
1. 필요성					

- IMO(국제해사기구)의 선박배출가스에 대한 국제 강화 및 세계 주유 국가의 ECA 확대
 - 유럽, 북미, 싱가폴, 호주 등 포함한 배출가스 규제강화구역(Emission Control Are) 확대
 - 기존 연료 사용에 대한 유가상승 및 환경규제의 강화로 인한 LNG 대체연료로의 수요 증가
 - 선박의 스마트쉽, 그린쉽 등 고부가가치 선박에 대한 핵심 기자재개발이 필요하며, 국산화 적용 및 국제 경쟁력 확보를 위한 정부의 지원이 필요
- 연료추진용 LNG 보관탱크는 내부압력 및 온도변화 등 환경에 의한 증발이 발생함과 동시에 폭발위험이 따르므로 해당 위험성을 제거하기 위한 장치가 필요
 - 온도 및 압력 제어에 의한 BOG 발생 저감은 근본적인 대책이 될수 없으며, 처리 UNIT이 필요
 - BOG Handling 시스템은 증발가스를 압축하여 증발량을 저감하기 위한 Gas Compressor, 양질의 연료를 엔진에 공급하기 위한 Heavy Carbon Remover, 과다 증발가스의 소각을 위한 BOG 소각 장치, BOG Handling 시스템 공정 설계 및 설계인증, 안전성 확보 등 기술개발이 필요

- 최종목표: LNG연료추진선용 0.35t/h급 BOG Handling 시스템 개발
 (TRL: [시작] 4단계 ~ [종료] 7단계)
 - 0.35 t/h 급 연료탱크 발생 증발가스의 압축 장치 개발
 - * 탱크 용량, 형상 등을 고려한 증발 가스량, 압력데이터 예측 및 적용
 - * 설계 용량 제어가 가능한 압축기 개발 및 밸브 시스템 구성
 - LNG 연료 내 Heavy Carbon 성분 추출 및 엔진 공급 장치 개발
 - * LNG 연료 내 Carbon 추출 구조 설계 및 제작 기술 개발
 - * HC 제거, HC Drain용기 및 Instrument 설계 제작기술
 - 0.35 t/h 급 자연증발가스 및 LNG 벙커링 시 발생하는 가스 소각 장치 개발
 - * 설계 유량의 자연증발가스 소각을 위한 소각룸 설계
 - * Ignitor, Burner 등 소각 장치 설계 제작
 - * 탱크 압력 Control 및 과도 발생 가스에 대한 소각 성능 확보
 - 자연증발가스처리 공정 제어 설계 및 검증 해석 기술 개발
 - * 자연증발가스처리 공정 제어 개발
 - * 선박 환경 및 운항 조건이 고려된 탱크-BOG Handling 제어 시스템 개발
 - * 기본 공정 설계 기반 제어 및 각 시스템 설계 검증 기술 개발
 - 시스템 설계 제작 수행 및 설계인증 시험을 통한 성능, 안전성 확보
 - * 증발가스 압축 성능 및 소각기 성능, Heavy Carbon 추출 후 엔진 공급 성능 평가

- * 제품 설계 및 선박 안전성 확보를 위한 위험성 분석 평가
- * 제3자 검증 시험 및 제품 형식 승인 취득

※ 시스템 개발시 관련 표준 연계할 것

○ 개발목표

핵심 기술/제품 성능지표		단위	달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1	압축기 토출 압력	bar	8	-	8
2	압축기, 소각기 용량	t/h	0.35	-	0.15 (소형가스압축기/소각기)
3	설계 온도	$^{\circ}$	-163 ~ 40	-	-163 ~ 40
4	위험성 분석(FMEA)	건	3	-	-
5	위험성 분석(HAZOP)	건	1	-	-

○ TRL 핵심기술요소(CTE)

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	자연 증발 연료가스 엔진 공급 장치	7	• Heavy Carbon 추출 및 압축 기술• 부하에 따른 연료의 엔진 공급 유량Control 제어• 제3자 검증 시험 및 제품 형식 승인	제3자검증
2	자연 증발 연료가스 소각 장치	7	• 연료 Tank의 압력 및 제어와 발생 가스의 소각 성능 확보 • 제3자 검증 시험 및 제품 형식 승인	제3자검증

3. 지원기간/예산/추진체계

○ 기간 : 37개월 이내 (1차년도 개발기간 : 6개월 이내)

○ 정부출연금 : '17년 6억원 이내 (총 정부출연금 46억원 이내)

○ **주관기관** : 중소·중견 기업

○ **기술료 징수여부** : 징수

관리번호 2017-조선해양-일반-지정-07 중분류 I 중분류II 기술분류 **과제성격** 원천기술형(), 혁신제품형(√) 조선/해양시스템 **융합유형** 신제품형(), 고부가가치형(√), 해당없음(신성장동력 ICT융합(), 바이오헬스(), 고급소비재(), 신소재부품(), 주력신업고부가 되床화√), 에너지신신업(해당여부 |특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(), 경쟁형R&D() Topside Module(500ton 이상) 제작 상용화를 위한 생산공법·기술 과제명

1. 필요성

및 핵심 장비 패키지 개발

- ㅇ 국내 해양플랜트 모듈 제작업체의 생산 능력 확보 및 기자재 업체의 엔지니어링 향상으로 대외 경쟁력 강화
- 모듈 생산공법·생산기술 개발을 통한 Module 전문 제작업체 육성
- 대형 에너지기업(IOC/NOC ¹)의 요구사항(독소조항)에 대응하기 위한 위험관리 (Risk Management)기술 구축
- ㅇ 핵심 기자재 장비의 프로젝트 납품을 위한 엔지니어링 문서 생산 능력을 배양하고, 장비 및 요소부품의 시험데이터를 수집, 분석, 데이터베이스화하여 대외 기술신뢰도 향상을 도모함으로써 국내 기자재업체의 실 프로젝트 납품 또는 장비 패키징 실적확보 필요

2. 연구목표

○ 최종목표 : Topside Module(500 Ton이상)제작상용화를 위한 생산공법·생산기술 및 핵심 장비 패키지 2종 개발

(TRL: [시작] 5단계 ~ [종료] 8단계)

- Topside Module 생산공법·생산기술 개발
 - * Module 제작 전문기업으로의 도약을 위한 'Module 생산 적기납품을 위한 공법기술'과 'Module 생산을 위한 생산관리 기술'개발
 - * Module 제작 전문기업의 자체역량(생산공법·생산기술 및 각종 절차서 개발 등) 향상
 - * 제작 모듈의 시운전을 통한 건조 능력 검증
- Topside 핵심 장비 개발 및 검증(4種중 2種 선택)
 - * 아래 제안된 4종(種)중 2종(種) 선택
 - ① Instrument용 Air Compressor & Air Dryer (계측기용 압축공기 공급장치 패키지)
 - ② Offshore Topside용 Nitrogen Generator (질소가스 공급장치)
 - ③ Offshore Topside용 Valve 작동용 Hydraulic Power Unit (밸브작동용 유압공급장치)
 - ④ Seawater 처리용 Chemical Injection Unit (해수처리용 화학제 주입장치)
 - * Offshore Topside Spec기준 및 핵심 장비(AIP승인) 개발 및 성능검증
 - * 기존 해외납품 실적과 동일 또는 우수 사양(국내 기자재적용 포함)
 - * 핵심기자재관련 국제표준 및 대형 발주처(IOC/NOC) 대응한 독소조항 및 대응 장비별 Qualification List 2), Deviation List 3), Derogation List 4)

¹⁾ IOC: International Oil Company, NOC: National Oil Company

²⁾ Qualification List : 장비 공급에 심각한 문제(불가능)을 발생시키는 무리한 요구사항(독소조항) 항목

³⁾ Deviation List : 프로젝트 사양 또는 각종 국제 표준(API, ISO등)에 대한 수행이 어려운 요구사항(독소조항) 항목

⁴⁾ Derogation List : 발주처 자체 사양(예, TOTAL사 GS, SHELL사 DEP등)에 대한 수행이 어려운 요구사항(독소조항) 항목

ㅇ 개발목표

	핵심 기술/제품 성능지표	단위	달성목표	국내 최고 수준	세계최고수준 (보유국, 기업/기관명)
	제조 관련 수행 절차서	EA	MC/Pre-Commissioning/Onshore Commissioning 절차서 각 2건 이상	조선3사 기술수준	(대한민국, 조선3사) (싱가폴, Keppel)
	Inspection 절차서	EA	Inspection 절차서 5건 이상	조선3사 기술수준	(대한민국, 조선3사) (싱가폴, Keppel)
모 듈	Module 제조관점 주요 독소조항 (Qualification, Deviation and Derogation List)	EA	Module 제조(Construction)관점 주요 독소조항 100건 이상	조선3사 기술수준	(대 한민국, 조선3사) (싱가폴, Keppel)
	납품 실적 또는 계약확인서	EA	Module 납품계약서 또는 납품실적 1건 (국내외 조선소, ICO/NOC, 대형 기자재 업체 및 해양플랜트 운영업체 등)	조선3사 기술수준	(대한민국, 조선3사) (싱가폴, Keppel)
	(공통) 장비 및 부품 신뢰성 데이터 구축	set	. 시험보고서(영문), · 신뢰성 Data format(최소 50시간/분기 이상)	-	OREDA Book
	(공통) 엔지니어링 문서 EA . VDRL 50종* (영문, AFD** 또는 AFC**)				AVL 등재
	(공통) 장비 설계 승인	set . AIP*** 승인		-	AVL 등재
	(공통) 설계, 제조관점 주요 독소조항 (Qualification, Deviation and Derogation List)	EA	. 100 건 (영문, 독소조항 우선순위화, 대응책 필수)	-	Vendor내 Database 및 대응절차서 보유
	(공통) 통합 구조물 및 통합제어반	. 구조물 및 통합제어반 1 Set . 구조물 및 통합제어반 1 Set . 건정된 2종 장비 설치 및 통합테스트용 . 장비별 유지보수장치(Material Handling)포함		-	AVL 등재
핵 심 장 비	(장비1) Instrument용 Air Compressor & Air Dryer (계측기용 압축공기 공급 장치 패키지)	set	Screw Type(Dry): 2x100% - Air Cooling Type - 출력단 유량(Oper.): 1,800 Nm3/hr - 출력토출압(Oper.): 10.0 Bar - Dryer 유량(Oper.): 1,530Nm3/hr - 노점 - 40 deg C 이하		Altlas Copco(Sweden) , Kolco(Japan) Howden(UK)외
	(장비2) Offshore Topside용 Nitrogen Generator (질소가스 공급장치)	set	· Membrane Type, 1x100% · 출력단 유량(Oper.) : 360 Nm3/h · N2 Purity 97%, 산소농도3% 이하 · Membrane 교체 기능 포함	_	Air Products 외
	(장비3) Offshore Topside용 Valve 작동용 Hydraulic Power Unit (밸브작동용 유압공급장치)	set	· 토출압(Oper.): 190~200(bar), 1x100% · 작동 Fluid 유량(Oper.):7.0 Liter/min · Re-circulation pump line유량 및 압력 : 70Liter/m, 10(bar)	-	W-Industires (USA), HITEC(Norway) , TYPCO(UK), Frames(USA)의
	(장비4) Chemical Injection Unit (화학제 주입장치)	set	· Chemical Injection, 2x100% · Chemical 저장 탱크유량 : 5.0m3 · 토출압 20(bar), · Fluid 유량 : 5~10 Liter/hr	-	W-Industires (USA), HITEC(Norway) , TYPCO(UK), Frames(USA)♀

^{*} 실 프로젝트 대비 VDRL(Vendor Document Register List): 50건 이상

^{**} AFD: Approval For Design(설계승인), AFC: Approval For Construction(제조승인)

^{***} Approval In Principle(개념설계인중)

○ TRL 핵심기술요소(CTE)

- Topside Module 생산공법 및 생산기술 개발

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	모듈 모든 항목	8	 시운전(MC. Commissioning) 절차서 각 2건 이상 검사(Inspection) 절차서 5건 이상 제조관점 주요 독소조항 100건 이상 Module 납품 계약서 및 납품 실적 1건 	제3자 검증 (국내외 조선소 or 국내외 발주처)

- Topside 핵심 장비 개발 및 검증(4種중 2種 선택)

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	전 장비 공통적용 항목	7	 시험보고서(4회/년, 총 6회 이상) 최적 공정 설계보고서 VDRL 50종(영문, AFD 또는 AFC) 독소조항: 100 건 PQ (Pre-Qualification)를 바탕으로 참여기관(조선3사 중 1곳)의 Vendor Proposed 실적: 최소 2회 이상 	· 국내 4계절 반영 · FAT Document 기준 : 각 장비별 국제표준 (ex: API, ISO) 및 제안 된 IOC/NOC 사양기준
2	(장비1)Instrument용 Air Compressor & Air Dryer (계측기용 압축공기 공급 장치 패키지)	7	- Air Compressor & Dryer Set : 1 Set (2x100%)	
3	(장비2)Offshore Topside용 Nitrogen Generator (질소 가스 공급장치)	7	- Nitrogen Gen Set : 1 Set (1x100%)	· 국내 4계절 반영 · 최소 운영환경
$oxed{4}$	(장비B)Offshore Topside용 Valve 작동용 Hydraulic Power Unit(밸브작동용 유입공급장치)	7	- Topside HPU : 1 Set (1x100%)	·
5	(장비4)Seawater 처리용 Chemical Injection Unit (해 수처리용 화학제 주입장치)	7	- Chemical Injection : 1 Set (2x100%)	
6	통합 구조물 및 통합 제어 반	7	- 구조물 : 1 Set - 통합제어반 : 1 Set - Material Handling : 2 Set/장비별	

3. 지원기간/예산/추진체계

○ 기간 : 49개월 이내 (1차년도 개발기간 : 6개월 이내)

○ 정부출연금 : '17년 13억원 이내 (총 정부출연금 90억원 이내)

○ **주관기관** : 중소·중견 기업

○ **기술료 징수여부** : 징수

관리번호 2017-메디칼디바이스-일반-지정-08		중분류 l	중분류II
과제성격 원천기술형(), 혁신제품형(√)	기술분류	치료기기 및 진단기기	기능 복원/보조 및 복지기기

융합유형 신제품형(), 고부가가치형($\sqrt{}$), 해당없음()

신성장동력 ICT융합), 바이오헬스(√), 고급소비재), 신소재부품), 주력신업고부기기치회), 에너지신신업) **해당여부** 특허연계(). 표준연계(√). 디자인연계(). 글로벌R&D(). 초고난도(). 경쟁형R&D()

과제명 정형용 인공고관절 임플란트 라이너의 스마트 모니터링 시스템 개발

○ 인공고관절 식립 후 라이너의 마모·손상 시 인공고관절의 탈구 등 여러 형태의 심각한 문제가 발생하지만, 식립된 임플란트 라이너의 상태를 정확하게 모니터링하여 의사의 진단을 보조할 수 있는 기술이 부재하여 환자에게 임상적, 비용적 부담이 발생

2. 연구목표

○ 최종목표 : 정형용 인공고관절 임플란트의 손상을 예측할 수 있는 생체결합 센서 디바이스 및 스마트 모니터링 시스템 개발 (TRL : [시작] 2단계 ~ [종료] 6단계) (표준 연계 과제)

- 정형용(인공고관절) 임플란트 내 장착 가능한 생체 결합 센서 및 모니터링 디바이스 개발
- 인공고관절 임플란트 내 장착 가능한 초소형 센서모듈 및 무선 충전·통신 기술 개발
- 생체삽입 치료물 이력관리를 위한 차세대 의료기기 스마트 추적관리 시스템 개발
- 센서 일체(삽입)형 인공관절 개발 및 전임상 평가결과서 제출

○ 개발목표

핵심 기술/제품 성능지표		단위	달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1	체내 삽입 센서의 라이너 측정 분해능	mm	0.5 이하	-	-
2	체내 삽입 라이너 측정 센서 동작 전력	mW	10 이하	-	-
3	체내 무선 충전/통신 투과 Depth	mm	60 이상	-	50 (미국, Georgia Tech)
4	체내 무선 통신 Data Rate/Data 에러율	bps/%	1k이상/0.1이하	-	1k / 0.1% (미국, Georgia Tech)
5	체내 무선 충전 효율	%	3	-	(미국, Georgia Tech)

○ TRL 핵심기술요소(CTE)

	핵심 기술요소		생산수준 또는 결과물	시험평가 환경
1	생체결합 센서 디바이스	TRL6	인공고관절 임플란트용 생체결합 센서 디바이스 시제품	전임상 시험
2	라이너 모니터링 시스템	TRL6	인공고관절 임플란트용 라이너 모니터링 모듈 시제품	전임상 시험
3	의료기기 추적관리 시스템	TRL6	의료기기 스마트 추적관리 시스템 시제품	전임상 시험
4	생체투과 무선 충전/통신시스템	TRL6	인공고관절 임플란트용 무선 충전/통신 모듈 시제품	전임상 시험

3. 지원기간/예산/추진체계

○ **기간** : 36개월 이내(1차년도: 12개월, 2차년도: 6개월, 3차년도: 7개월, 4차년도: 11개월)

○ 정부출연금 : '17년 10억원 이내(총 정부출연금 30억원 이내)

주관기관 : 중소·중견기업기술료 징수여부 : 징수

관리번호 2017-스마트전자-일반-지정-09		중분류 l	중분류II
과제성격 원천기술형(), 혁신제품형(√)	기술분류	광응용기기	-

융합유형 신제품형(), 고부가가치형(), 해당없음(√)

신성장동력 ICT융합), 바이오헬스), 고급소비재), 신소재부품), 주락신업고부기가 하화), 에너지신산업) 해당여부 특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(), 경쟁형R&D()

과제명

차량용 Laser/LED Hybrid 헤드램프 소형 광학계 기술개발

1. 필요성

- 차량에 장착되어 시인성, 안전성을 개선하고 새로운 기능성을 부여할 수 있는 레이저 헤드램프 기술은 고효율, 고휘도 및 소형화가 가능하여 차세대 헤드램프 핵심 기술임
- LED기술과 결합되어 2014년 최초로 상용차에 적용된 레이저 헤드램프는 2025년 전체 헤드램프 시장의 15% 비중을 차지할 것으로 예측됨
- 현재 레이저 헤드램프 관련 핵심기술의 대부분을 해외에 의존하고 있으며 기술의 국산화 개발을 통해 기반기술을 확보 및 미래 신시장 창출이 필요함

2. 연구목표

- 최종목표 : 차량용 Laser/LED Hybrid 헤드램프 국산화 개발 (TRL : [시작] 3단계 ~ [종료] 7단계)
- 1. 차량용 Laser/LED Hybrid 헤드램프 개발
 - 고출력 레이저 헤드램프에 적합한 광학계 설계
 - * 배광법규(ECE R112) 만족, 하이빔 색도 법규(ECE R48) 만족
 - 안전 기능 구현을 위해 헤드램프의 OHP(Over-Heat Protection) 및 Fail-Safety 구현
 - * 형광체 파손(Fail-Safety) 및 성능저하시(OHP) 직접 외부로 레이저가 출사되는 경우 위험에 대한 보행자 또는 대항차 안전 보장 기술 개발)
 - Laser/LED Hybrid 헤드램프 신뢰성 평가
- 2. 광원/광학계 모듈 패키징 기술 개발
 - LD 및 광학계 모듈 패지킹 기술개발
 - * 파장 : 440 ~ 480nm, 광량 : 150 lm
- 3. 경량화, 신방열 구조 적용 연구, 광학계 일체화 및 제조기술 개발
 - 신소재 방열 특성평가
 - 레이저 접합, 클리닝 등 친환경 제조기술 개발

ㅇ 개발목표

핵심 7	핵심 기술/제품 성능지표		달성목표	국내최고수 준	세계최고수준 (보유국, 기업/기관명)
광원 광학계	LD 모듈 개수 ¹⁾	EA	1	-	3 (독일, BMW)
(하이빔	형광변환 성능 @ LD	lm	150 이상	90	120
모듈 기준)	CRI	a.u.	65 이상	60	65
전조등	하이빔 도달 최대거리 ²⁾ @(1 lux)	m	600 이상	-	600 (독일, BMW)
광학계 (Laser/LED 하이브리드	하이빔 법규 (ECE R112)	-	만족	1	만족
³⁾ 전조등)	하이빔 색도 법규 (ECE R48)	-	만족	-	만족
Laser 헤드램프	안전 복구 기능(Laser) ⁴⁾	-	OHP/Fail-Safety 구현	-	OHP/Fail-Safety 구현

안전성	전자 신뢰성 ⁵⁾ 및 전자파 안정성	_	GMW 3172&3097 만족	-	만족
신뢰성 평가	내열시험	-	GMW 14906 만족	-	만족
	복합환경 진동 시험	-	GMW 14906 만족	-	만족

- 1) LD 모듈 안에 LD칩은 복수개 가능
- 2) 하이빔 원거리 측정 방법은 기존 배광 규격 검사 장비로 측정
- 3) Laser/LED Hybrid 전조등 사양은 기존 헤드램프 하이빔 배광(ECE R112) 및 색도 규격(ECE R48) 만족
- 4) Over-Heat Protection, 온도가 일정 수준을 초과하면 전류 차단하는 기능
- , 5) 작동 전압, 전원역극성, 과전압, 시동&작동시 전압변동, 전원전압 순단&단속, 고전압 작동 한계
- 6) 선진사 레이저 작동 조건(차량 주행시 하이빔 작동 상태에서 시속 60 km/h 이상)에 따라 하이빔 모듈 파트 시험

○ TRL 핵심기술요소(CTE)

	핵심 기술요소 최종단계		생산수준 또는 결과물	시험평가 환경
1	고방열형광체기술	7단계	고효율 형광체	GMW 14906 만족
2	고출력LD제어기술	7단계	레이저 구동회로	GMW 3172&3097 만족
3	고성능램프광학기술	7단계	Laser/LED Hybrid 램프	ECE R112

3. 지원기간/예산/추진체계

o 기간 : 3년 이내(1차년도 : 12개월, 2차년도 : 6개월, 3차년도 : 7개월, 4차년도 : 11개월)

ㅇ 정부출연금 : '17년 6억원 이내(총 정부출연금 20억원 이내)

o 주관기관 : 중소·중견 기업

o 기술료 징수여부 : 징수

관리번호	2017-스마트전자-일반-지정-10		중분류 l	중분류II
과제성격	원천기술형(), 혁신제품형(√)	기술분류	광응용기기	-

융합유형 신제품형(). 고부가가치형(). 해당없음(√)

신성장동력 ICT융합(), 바이오헬스(), 고급소비재(), 신소재부품(), 주력신업고부가 기차회(), 에너지신신업() 해당여부 특허연계(), 표준연계(), 디자인연계(), 글로벌R&D(), 초고난도(), 경쟁형R&D()

과제명 차량 내장용 내열성 열경화 플라스틱 렌즈 및 광학모듈 기술개발

1. 필요성

- 4차 산업혁명 관련 정보습득의 "눈"으로서의 광학모듈 수요는 급성장하고 있으며, 특히 차량용 광학계의 경우 모바일 시장 이상으로 급성장
 - 차량용 광학렌즈모듈 시장 1600억원('15년) → 4.65조원('20년)
- 차량용 결상 광학계는 운전자 인식, 모션감지, 블랙박스, 어라운드 뷰 등 다양한 분야에 활용되며, 용도에 따라 가시광, 근적외선 모듈이 활용됨
- 차량용 렌즈 모듈은 차량내부 고온사용환경(약80~100°C)으로 인해 열가소성 플라스틱 렌즈만으로는 광학성능 저하되어 고가의 유리렌즈와 조합하여 사용됨
 - 열가소성 플라스틱렌즈(사출렌즈) : 양산성 좋지만 고온환경에 취약
 - 유리렌즈(유리성형렌즈) : 플라스틱 대비고가(5~10배 가격)이고 양산성 나쁨
- 열경화 수지를 적용한 광학모듈은 내열성의 저가화가 가능하여, 공정표준화 기술 개발시 기존 열가소성 사출렌즈 기술을 대체가능함
- 제안기술은 유리렌즈보다 저렴하고, 기존 사출렌즈보다 내열성이 우수한 열경화 수지 적용한 차량 내장용 내열성 박형 광학모듈을 개발하고자 함

2. 연구목표

- 최종목표 : 차량 내장용 내열성 열경화성 플라스틱 렌즈 및 광학모듈 기술개발 (TRL : [시작] 3단계 ~ [종료] 7단계)
 - 차량용 모션 인식용 광학계 시스템 적용환경 정의
 - * 차량내부 고온조건 및 광학성능 만족
 - * 적용 분야 : 운전자 감지, 모션 인식 등
 - 광학설계
 - * 열경화 플라스틱 적용 비구면 렌즈 설계
 - * 광학모듈 사양: VGA급 이상, 화각 60° 이상, 왜곡 ± 25%이하
 - 열경화 플라스틱 렌즈 성형공정기술 개발
 - * 열경화렌즈 성형용 마스터금형 제작기술 개발
 - * 열경화 공정 반영 렌즈 성형조건 최적화 기술개발
 - * 열경화 플라스틱렌즈 열변형보정 기술개발
 - * 렌즈성능 : 형상오차(PV) 3 μ m 이하, 표면조도(Ra) 10 nm 이하
 - 렌즈모듈 내열성 평가 : 차량내부온도조건 시험(온도범위 -20~125°C)
 - * 고온환경(100 °C)하에 렌즈 소성변형 및 오차평가
 - * 고온/고습 환경시험 및 고온동작 내구시험 후 광학성능평가
 - * 내열성 렌즈모듈 해상도(MTF) : 30%이상@0.7 Field 이하
 - * 내열성 렌즈모듈 Distortion: ± 25% 이하 @1.0 Field

ㅇ 개발목표

7	핵심 기	술/제품 성능지표	단 위	달성목표	국내최고수준	세계최고수준 (보유국, 기업/기관명)
1		화각	deg	60 이상	-	-
2		상온 형상정도(PV)	μm	3 이하	-	3 (스위스, Heptagon)
3	렌즈	내열 환경시험 후 형상정도(PV) (100°C 고온고습환경시험 후 변형측정, Bestfit 형상정도 오차) ¹⁾	<i>μ</i> m	5 이하	15 이상 (사출렌즈, 소성변형 발생)	5 이하 (스위스, Heptagon)
4		센서 사이즈	inch	1/3이하	1/3이하	1/3이하 (스위스, Heptagon)
5	광학	MTF@0.0F ²⁾	%	55이상@ -30~70°C	55이상@ -30~70°C	55이상@-30~70°C (상용 환경조건)
6	모듈	MTF@0.7F ²⁾	%	30이상@ -30~70°C	30이상@ -30~70°C	30이상@-30~70°C (상용 환경조건)
7		왜곡@1.0F ³⁾	%	±25 이하	±25 이하	±25 이하 (상용 환경조건)

* 성능지표 측정방법

- 성능지표 3번의 1) 시험후 동일 샘플에 대해 성능지표 4, 5의 2), 3) 측정
- : 성능지표 4, 5는 온도 챔버내 30분이상 보관후 2분 이내 상온(20°C~25°C) 측정
- 성능지표 1,4,5는 설계 및 사용 목적에 따라 상이, 차량내부용 광각 모듈기준
- 성능지표 3의 고온고습 환경시험 기준조건 : 온도 100도, 습도85%, 168시간

○ TRL 핵심기술요소(CTE)

	핵심 기술요소	최종단계	생산수준 또는 결과물	시험평가 환경
1	설계기술, 광학성능	7단계	광학 설계	설계검증, 화각, 해상도, 왜곡 측정
2	금형 및 성형렌즈	7단계	열경화성 렌즈	형상정도 측정
3	내열온도	7단계	렌즈모듈	고온 환경시험(업계표준환경)

3. 지원기간/예산/추진체계

o 기간 : 3년 이내(1차년도 : 12개월, 2차년도 : 6개월, 3차년도 : 7개월, 4차년도 : 11개월)

o 정부출연금 : '17년 4억원 이내(총 정부출연금 15억원 이내)

o 주관기관 : 중소·중견 기업

o 기술료 징수여부 : 징수