- * 프린트는 Chrome에 최적화 되어있습니다. print
Data Intelligence Lab focuses on collecting, analyzing, and utilizing diverse and complex real-world data effectively. Our major research topics include data mining, graph machine learning, network science, and recommendation systems. Our goal is to develop "accurate and trustworthy data mining methodologies," which can help solve real-world problems and enhance the quality of life in society.
Major research field
Data Mining, Graph Machine Learning, Network Science, Recommender Systems
Desired field of research
Accurate, Robust, and Fair Graph Machine Learning and Its Applications
Research Keywords and Topics
그래프 표현 학습, 신뢰할 수 있는 그래프 마이닝, 추천 시스템, 그래프 + X (커리어 모델링, 이상 탐지 등)
Graph Representation Learning, Trustworthy Graph Mining, Recommender Systems, Graph + X (Career Modeling, Anomaly Detection, etc)
Research Publications
- The ACM Web Conference (WWW), Disentangling Degree-related Biases and Interest for Out-of-Distribution Generalized Directed Network Embedding, Hyunsik Yoo / Yeon-Chang Lee / Kijung Shin / Sang-Wook Kim, (2023.05)
- ACM International Conference on Information & Knowledge Management (CIKM), MARIO: Modality-Aware Attention and Modality-Preserving Decoders for Multimedia Recommendation, {Taeri Kim* / Yeon-Chang Lee*} / Kijung Shin / Sang-Wook Kim, (2022.10)
- ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR), Look Before You Leap: Confirming Edge Signs in Random Walk with Restart for Personalized Node Ranking in Signed Networks, {Wonchang Lee* / Yeon-Chang Lee*} / Dongwon Lee / Sang-Wook Kim, (2021.07)
국가과학기술표준분류
- EE. 정보/통신
- EE01. 정보이론
- EE0108. 인공지능